No cache version.

Caching disabled. Default setting for this page:enabled (code LNG204)
If the display is too slow, you can disable the user mode to view the cached version.

Algorithme A*

Fonctionnalités de l'algorithme A*

  • L'algorithme A* est un algorithme de recherche de chemin extrême.
  • A* est utilisé sur des graphes pondérés1
  • Nous pouvons utiliser l'algorithme A* (se prononce A Star) sur des graphes aux pondérations quelconques, et des graphes avec circuits ou sans circuits.
  • L'efficacité de A* repose sur la définition de bornes (par exemple des distances à vol d'oiseau).
  • L'algorithme A* est plus rapide que Ford-Bellman et Moore-Dijkstra, si le choix heuristique2 des bornes est judicieux (dans ce cas, la première solution trouvée est une des meilleures solutions possibles).

Contents Haut

Caractéristiques de l'algorithme A*

Nous parlons d'algorithme heuristique2 A* car l'égalité triangulaire entre les bornes n'est pas toujours vérifiée. Si certaines bornes ne respectent pas cette égalité triangulaire, A* donne un chemin qui n'est pas optimum.

Dans certains cas, l'algorithme A* peut toutefois se révéler plus lent à trouver le chemin, même si le choix heuristique est correct. Ces cas se présentent lorsque le chemin à emprunter doit d'abord "s'éloigner" de la destination, par exemple dans le cas d'un labyrinthe dans lequel le chemin qui part dans la direction de la destination est une "voie sans issue".

L'exemple du labyrinthe montre bien que le choix de l'algorithme en fonction de la situation est très important.

Contents Haut

Code de l'algorithme A*

Nous pouvons décomposer notre algorithme en deux phases : une phase d'initialisation des valeurs, et une phase d'exécution qui décrit ce qui se passe lorsque l'algorithme est exécuté.

Les explications suivantes sont identiques à celles que nous avons vu lors de l'algorithme de Moore-Dijkstra. La seule différence est que nous travaillons ici avec une fonction heuristique qui retourne la borne associée aux deux sommets évalués pour un arc.

Variables

Dans cette approche, nous utilisons des collections indexées (par exemple des tableaux) pour maintenir les différentes informations relatives aux états de chaque objet Sommet. Dans une approche "orienté-objet", nous pouvons maintenir ces informations par exemple dans l'objet Sommet lui même.

  • verticesLabels est le tableau qui contient les étiquettes. L'étiquette d'un sommet x est l'indice du sommet y précédent de x dans le chemin optimum de la racine vers le sommet x.
  • pathMinWeights est le tableau du coût (poids) des chemins depuis la racine jusqu'aux différents sommets.
    pathMinWeights[i] est le poids du chemin entre la racine et le sommet X[i].
  • definedVertices est le tableau qui contient les sommets traités (définis comme ∈ au chemin à renvoyer).

Nous utiliserons aussi certaines variables supplémentaires :

  • X est l'ensemble des sommets du graphe
  • n est le nombre de sommets du graphe (la cardinalité de X).

arrayFirstIndex : indice du premier élément dans un tableau3.

Phase d'initialisation

  • k := arrayFirstIndex // Le compteur pointe sur le premier élément d'un tableau.
  • j := indice_de_la_racine // indice (dans X) du sommet racine (départ du chemin).
  • Sommets traités :
    • definedVertices[k] := j //la racine fait d'office partie du chemin, car elle est le point de départ4. Nous pouvons donc stocker au premier emplacement de definedVertices l'indice (dans X) du sommet de départ.
    • (i > k) : definedVertices[i] := arrayFirstIndex-1 // Initialisation du tableau avec une valeur hors des limites du tableau5.
  • Poids (r->x) :
    • pathMinWeights[definedVertices[k]] := 0 // Le chemin de la racine vers la racine a un poids égal à zéro.
    • (i > k) pathMinWeights[i] := 2maxCost // Valeur hors des limites du possible (double de maxCost6).
  • Étiquettes :
    • verticesLabels[definedVertices[k]] := arrayFirstIndex // Étiquette de la racine. Pointe vers un emplacement non valide car la racine n'a pas de précédent.
    • (i > k) verticesLabels[i] := arrayFirstIndex-1 // Initialisation du tableau avec une valeur hors des limites du tableau5.

Phase d'exécution

  1. //Il reste des sommets non traités
  2.  
  3. /*i est l'indice de x, j est l'indice de y
  4. x est non traité, et le chemin(r,x) est le plus court
  5. de tous les chemins de r vers un sommet non traité */
  6. := choisir x {| ( X\definedVertices)
  7. (pathMinWeights[i]=minimum{
  8. (pathMinWeights[j]+heuristic(i,j))j X\definedVertices
  9. })};
  10.  
  11. //k pointe à présent sur le prochain emplacement libre de definedVertices
  12. := k+1;
  13.  
  14. //i est défini comme étant traité
  15. definedVertices[k] := i;
  16.  
  17. //vérifier si ce chemin est le meilleur
  18. pour_tout X\definedVertices faire
  19.  
  20. /*si x est un précédent de y sur un chemin
  21. plus court que le meilleur chemin actuel...*/
  22. si pathMinWeights[i]+weight(i,j) < pathMinWeights[j] alors
  23.  
  24. //le poids du chemin vers "y" est mis à jour
  25. pathMinWeights[j] := pathMinWeights[i]+weight(i,j);
  26.  
  27. //j est l'indice du sommet précédent de "x"
  28. verticesLabels[i] := j;
  29.  

A* vs Moore-Dijkstra

Le fait d'inclure notre fonction heuristique (ligne 9) dans le choix du sommet nous permet de prendre en compte une borne qui limitera les recherches en direction de la destination si les bornes sont judicieusement établies. L'amélioration est remarquable en pratique, bien que la complexité théorique reste identique.

Error Infobrol

Can not display this page of the Infobrol website

Type of error (18-01)

Unknown format specifier "&"

Please try again in a few minutes…

Return to the home page




Steph