Fermeture transitive d'un graphe : Warshall

Matrice d'accessibilité

La notion d'accessibilité en théorie des graphes est la possibilité d'atteindre un sommet y depuis un sommet x.

Le sommet y est accessible depuis un sommet x soit si x = y (chemin de longueur nulle), soit si il existe un chemin entre x et y.

Nous utiliserons pour les chemins d'un sommet à lui même la matrice d'identité (I) de la manière suivante : M' = IA1A2⊕ ... ⊕An qui peut en pratique se simplifier par M'=(IA)n-1.

Fermeture transitive

Lorsque nous nous posons la question de savoir s'il existe des chemins entre deux sommets d'un graphe, nous ne sommes pas forcés de déployer l'artillerie lourde.

Mais lorsque nous nous posons souvent la question pour un même graphe, ou lorsque nous désirons savoir si il existe un chemein entre x et y pour tout x et pour tout y du graphe, alors nous avons besoin de calculer la fermeture transitive.

Calculer la fermeture transitive d'un graphe en pré-traitement révèle souvent un gain important lors de traitement ultérieur.

L'algorithme le plus répendu pour le calcul de la fermeture transitive d'un graphe est l'algorithme de Roy et Warshall1

Inhaltsverzeichnis Haut

Algorithme de Roy-Warshall

Fonctionnalités de l'algorithme de Roy-Warshall

L'algorithme de Roy-Warshall est un algorithme de recherche de fermeture transitive d'un graphe.

Caractéristiques de l'algorithme de Warshall

L'algorithme de Roy-Warshall nous permet de calculer aisément la matrice booléenne de la relation d'accessibilité, en jouant sur le double emploi d'une variable.

Warshall évite donc d'implémenter un algorithme de type M := IA1A2⊕ ... ⊕An qui se révèle beaucoup trop complexe.

La variable k joue donc un double rôle dans notre algorithme :

  • Indice de boucle : nous constatons que la boucle principale utilise k comme compteur d'itérations, de 0 (chemins de longueur 0, donc sans sommet intermédiaire), jusque n (nous avons alors envisagé tous les chemins passant par n'importe quel sommet intermédiaire).
  • Indice de sommet : M[i,k] et M[k,j].

Inhaltsverzeichnis Haut

Code de l'algorithme de Warshall

Phase d'initialisation

  • (i,j) M[i,j] := Aij=1?true:false;2 // Toutes les valeurs 1 de la matrice A sont représentés par true dans le tableaux de tableaux M. Les valeurs 0 sont représentés par false.

Phase d'exécution


Code (Pseudo-code de Warshall) (9 lignes) :
  1.     si M[i,k] = true alors
  2.       pour j variant_de 1 jusque n faire
  3.         M[i,j] := M[i,j] ⊕ M[k,j];
  4.       fin pour
  5.     fin si

Comme l'algorithme de Warshall pour le calcul de la fermeture transitive se base sur l'emploi de matrices, nous allons travailler avec un tableau de tableaux, ce qui est identique, mais assez coûteux.

Inhaltsverzeichnis Haut

Algorithme de Minoux

Fonctionnalités de l'algorithme de Minoux

  • L'algorithme de Minoux est un algorithme de recherche de fermeture transitive d'un graphe.
  • Minoux n'accepte pas les circuits.
  • Complexité en général inférieure à celle de l'algorithme de Warshall.

Caractéristiques de l'algorithme de Minoux

Si nous avons la certitude que notre graphe ne présente pas de circuit, nous pouvons encore améliorer la recherche de fermeture transitive de notre graphe grace à l'ordre topologique sous-jacent, comme le propose Minouxref 2. Cette amélioration se marque le plus avec les graphes de faible densité.

Dans le pire des cas, la complexité de l'algorithme de Minoux est de Ordre de grandeur(m*n) pour chaque arc, avec m pour le nombre d'arcs et n pour le nombre de sommets, donc Ordre de grandeur(n3)

Il existe aussi la version de Minoux et Bartnik, pour laquelle nous avons une complexité de Ordre de grandeur(∑dintj . dextj).

Inhaltsverzeichnis Haut

Deutsche Übersetzung

Sie haben gebeten, diese Seite auf Deutsch zu besuchen. Momentan ist nur die Oberfläche übersetzt, aber noch nicht der gesamte Inhalt.

Wenn Sie mir bei Übersetzungen helfen wollen, ist Ihr Beitrag willkommen. Alles, was Sie tun müssen, ist, sich auf der Website zu registrieren und mir eine Nachricht zu schicken, in der Sie gebeten werden, Sie der Gruppe der Übersetzer hinzuzufügen, die Ihnen die Möglichkeit gibt, die gewünschten Seiten zu übersetzen. Ein Link am Ende jeder übersetzten Seite zeigt an, dass Sie der Übersetzer sind und einen Link zu Ihrem Profil haben.

Vielen Dank im Voraus.

Dokument erstellt 03/01/2010, zuletzt geändert 26/10/2018
Quelle des gedruckten Dokuments:https://www.gaudry.be/de/graphes-fermeture-transitive.html

Die Infobro ist eine persönliche Seite, deren Inhalt in meiner alleinigen Verantwortung liegt. Der Text ist unter der CreativeCommons-Lizenz (BY-NC-SA) verfügbar. Weitere Informationen auf die Nutzungsbedingungen und dem Autor.

Aufzeichnungen

  1.  Warshall : Stephen Warshall (1935 - 11 Décembre 2006), à travaillé pour la recherche et le développement dans des domaines tels que les logiciels d'exploitation, la conception de compilateur, les langages de programmation, et la recherche opérationnelle.

  2.  M[i,j] := Aij=1?true:false : Voir la syntaxe de l'opérateur ternaire.

Inhaltsverzeichnis Haut

Referenzen

  1. Buch Sprache des Dokuments:fr INFOB321 - Théorie des graphes : JP Leclercq, Cours de Théorie des Graphes et réseaux de Petri (September 2008)
  2. Buch Sprache des Dokuments:fr Graphes et algorithmes : Michel Gondran; Michel Minoux, Eyrolles - 1995 3eme ed. rev. et augm.

Diese Verweise und Links verweisen auf Dokumente, die während des Schreibens dieser Seite konsultiert wurden, oder die zusätzliche Informationen liefern können, aber die Autoren dieser Quellen können nicht für den Inhalt dieser Seite verantwortlich gemacht werden.
Der Autor Diese Website ist allein dafür verantwortlich, wie die verschiedenen Konzepte und Freiheiten, die mit den Nachschlagewerken gemacht werden, hier dargestellt werden. Denken Sie daran, dass Sie mehrere Quellinformationen austauschen müssen, um das Risiko von Fehlern zu reduzieren.

Inhaltsverzeichnis Haut