No cache version.

Caching disabled. Default setting for this page:enabled (code LNG204)
If the display is too slow, you can disable the user mode to view the cached version.

Diviser pour régner

Du latin divide ut imperes (ou ses variantes divide et impera, divide ut reges), le principe divise pour commander (ou divise pour régner) est attribué au Sénat romain, et relève de la stratégie militaire suivante : semer la discorde parmi ses opposants permet de les contrôler, les manipuler et les soumettre plus aisément. Cette machiavélique1 expression était inculquée aux enfants destinnés à prendre les rênes du pouvoir.

La division de l'opposant réduit ses forces, diminue sa confiance en l'opposition du fait du manque d'unité, et le déstabilise par des conflits internes.

Si en politique l'utilisation récurente de cette tactique peut avoir pour conséquence la révélation de la stratégie répétitive auprès des opposants, il n'en est pas de même en informatique, et nous pouvons continuer à affaiblir la difficulté d'une opération en la divisant.

Cette stratégie est fortement employée dans les alorithmes récursifs et sera généralement de type dichotomique (division en deux éléments, mais dont la taille n'est pas forcément égale).

Contents Haut

Exemple de diviser pour régner

Si nous devons chercher une définition dans un dictionnaire, nous pouvons parcourir les pages depuis la première jusqu'au moment où nous trouvons la définition. Espérons que l'on ne doive pas trop souvent chercher la définition des zygomatiques.

Intuitivement, lorsque nous cherchons une définition, nous ouvrons le dictionnaire à un endroit où il y a une forte probabilité que les mots définis ne soient pas trop éloignés du mot que nous cherchons, nous comparons les mots de la page ouverte avec celui cherché, et puis nous sautons encore quelques pages en avant ou en arrière jusqu'à trouver la bonne page.

Contents Haut

Principe de diviser pour régner

Nous allons à chaque fois diviser la quantité de données à traiter, jusqu'au moment où nous atteindrons le cas de base. A chaque fois nous devons respecter le fait que la division mène à un cas plus simple : nous dirons qu'il s'agit d'une relation bien fondée.

Nous atteignons le cas de base (minimal) de cette relation bien fondée "<" quand il n'est plus possible de diviser, ce qui peut s'écrire a minimal ⇔ Il n'existe pas deb : b < a

Ensuite, nous devrons combiner tous les éléments.

Nous pouvons employer des boucles pour implémenter ce genre de concept, mais la récursion est vraiment indiquée car nous effectuons la division lors de "la descente" dans la pile des appels récursifs, et nous effectuons la combinaison lors de" la remontée" de la pile.

L'algorithme résoudre(v) de type diviser pour régner peut donc se résumer de la manière suivante :

  • v est un cas de base ?
    • si oui : résoudre_directement(v)
    • si non :
      • Phase de décomposition : (v1, v2, ..., vn) := diviser(v) pour lequel v1, v2, etc. sont des sous ensembles de v obtenus après division.
      • Phase de récurtion : pour chaque i : ri = résoudre(vi) appel à la récursion pour encore diviser notre sous ensemble
      • Phase de recomposition : r = combiner(r1, r2, ..., rn)

Contents Haut

Trier en appliquant diviser pour régner

Nous pouvons appliquer le principe "diviser pour régner" aux différents algorithmes de tri, en remplaçant résoudre(v) par trier(liste_in). Pour nos exemples, nous allons définir certaines conditions:

liste_in : Liste<T>
liste_out : Liste<T>
Post-condition : liste_out est triée2, liste_in est une permutation3 de liste_out, et l'ordre de tri est réflexif.

  • Le tri par sélection :
    • Info : comme l'algorithme est récursif et retourne à chaque fois une nouvelle liste, listei correspond à la liste utilisée au moment i.
    • combiner = cons(v, listei) {v est l'élément à mettre en tête si il possède la plus petite valeur des éléments de la liste triée}
    • Cas de base : listei = null
    • "diviser" correspond ici à la recherche de la plus petite valeur, en Ordre de grandeur(n)
    • Nous pouvons en déduire que le temps total (diviser + résoudre + combiner) sera de l'ordre de Ordre de grandeur(n2), car il est fait n fois appel à "diviser".
  • Le tri par insertion :
    • diviser(listei) = {head(listei), tail(listei)}
    • Cas de base : listei = null
    • "combiner" correspond ici à l'insertion d'un élément dans une liste triée, et le temps est proportionnel à la taille de la liste Ordre de grandeur(n)4
    • Le temps total sera de l'ordre de Ordre de grandeur(n2)
    • Nous ne constatons donc aucune différence en ordre de grandeur avec le tri par sélection
  • Le tri par fusion :
    • Le tri par fusion est par définition un cas typique de diviser pour régner.
    • diviser(listei) = listei1, listei2 tel que listei1 + listei2 = listei et |listei1| = |listei1| ± 1 en Ordre de grandeur(log n)
    • Cas de base : |listei| = 1
    • "combiner" correspond ici à la fusion de deux listes triées en Ordre de grandeur(n)
    • Le temps total sera de l'ordre de Ordre de grandeur(n log n)
    • Le tri par fusion est donc nettement plus efficace en ordre de grandeur que le tri par sélection ou le tri par insertion.
Error Infobrol

Can not display this page of the Infobrol website

Type of error (18-01)

Unknown format specifier "&"

Please try again in a few minutes…

Return to the home page




Steph