Axiomes

Sommaire du document

Introduction

Dans le cas de calcul de probabilité où on évalue le nombre de chance d'obtenir telle ou telle valeur avec un dé, il semble évident qu'il existe une chance sur six d'obtenir la valeur associée à une des six faces du dé. Seulement, nous sommes souvent confrontés à des cas où il est impossible d'évaluer par la raison les chances de succès d'un résultat donné.

Dans tous les cas, que la probabilité d'un événement soit le fruit d'un raisonnement ou d'une statistique, elle satisfait à certaines théories axiomatiques.

Un axiome est une vérité évidente en soi.
Des philosophes grecs de l'antiquité considéraient que certaines affirmations étaient évidentes et ne nécessitaient aucune démonstration de preuve.

L'axiome est utilisé en mathématiques et en informatique comme un fait établi et non contradictoire sur lequel nous pouvons nous reposer pour établir une théorie. Dans certains cas, les axiomes sont choisis arbitrairement. La pertinence d'une théorie dépend donc de la pertinence de ses axiomes.

 

Axiomes de Kolmogorov

E = catégorie d'épreuve
A ⊂ E et B ⊂ E

Axiome 1

La probabilité d'un événement A est un nombre non négatif. Pr (A) ≥ 0

 

Axiome 2

La probabilité de l'événement certain E est égale à 1. Pr (E) = 1

 

Déduction

La probabilité d'un événement est un nombre positif supérieur ou égal à un. 0 ≤ Pr (A) ≤ 1

 

Axiome 3

La propriété de A ou de B (A et B étant disjoints) est égale à la somme des probabilités de ces événements. Pr (A ∪ B) = Pr (A) + Pr (B)
Cet axiome est appelé axiome d'additivité.

Exemple:
Une urne contient 10 boules blanches ,5 boules noires, et 15 boules bleues. On tire une boule de l'urne et on mesure la probabilité qu'elle soit blanche ou noire.
E={"tirer une boule"} #E=30
A={"tirer une boule blanche"} #A=10
B={"tirer une boule noire"} #B=5
Pr (A) = 10/30
Pr (B) = 5/30
Pr (A ∪ B) = Pr (A) + Pr (B) = 10/30 + 5/30 = 15/30 = 1/2

 

Remarque

Ces trois axiomes portent sur des probabilités discrètes, mais il existe aussi des probabilités continues, qui elles, ne dépendent pas de ces axiomes.

 

Réseaux sociaux

Vous pouvez modifier vos préférences dans votre profil pour ne plus afficher les interactions avec les réseaux sociaux sur ces pages.

 

Nuage de mots clés

6 mots clés dont 0 définis manuellement (plus d'information...).

Avertissement

Cette page ne possède pas encore de mots clés manuels, ceci est donc un exemple automatique (les niveaux de pertinence sont fictifs, mais les liens sont valables). Pour tester le nuage avec une page qui contient des mots définis manuellement, vous pouvez cliquer ici.

Vous pouvez modifier vos préférences dans votre profil pour ne plus afficher le nuage de mots clés.

 

Astuce pour imprimer les couleurs des cellules de tableaux : http://www.gaudry.be/ast-rf-450.html
Aucun commentaire pour cette page

© Ce document issu de l′infobrol est enregistré sous le certificat Cyber PrInterDeposit Digital Numbertection. Enregistrement IDDN n° 5329-229
Document créé le 19/03/02 01:00, dernière modification le Vendredi 17 Juin 2011, 12:12
Source du document imprimé : http:///www.gaudry.be/probabilites-axiomes.html
St.Gaudry©07.01.02
Outils (masquer)
||
Recherche (afficher)
Recherche :

Utilisateur (masquer)
Apparence (afficher)
Stats (afficher)
15838 documents
455 astuces.
550 niouzes.
3107 definitions.
447 membres.
8121 messages.

Document genere en :
0,51 seconde

Mises à jour :
Mises à jour du site
Citation (masquer)
A l'école, c'est le professeur qui devait lever la main pour parler à Chuck Norris.

Anonyme [Chuck Norris fact]
 
l'infobrol
Nous sommes le Jeudi 25 Mai 2017, 03:13, toutes les heures sont au format GMT+1.00 Heure, heure d'été (+1)